Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Neurol Sci ; 45(2): 735-740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37584878

RESUMO

OBJECTIVE: Electrodiagnostic testing is an important screening test for myotonic dystrophy type 1 (DM1). Although myotonic discharges are observed on electromyography in cases of DM1, it is difficult to distinguish DM1 from other myotonic disorders clinically. In the present study, afterdischarges, another type of pathological potential revealed by electrodiagnostic testing, were analyzed, and their role in distinguishing DM1 from other myotonic disorders was explored. METHODS: Data from 33 patients with myotonic discharges on electromyography were analyzed retrospectively. According to gene testing, the patients were divided into DM1 (n = 20) and non-DM1 myotonia (n = 13) groups. Afterdischarges were investigated by retrospectively evaluating the electrodiagnostic findings of motor nerve conduction studies, F-waves, and repetitive nerve stimulations. RESULTS: Afterdischarges were observed in 17 of the 20 patients with DM1, with an occurrence rate of approximately 85%. However, afterdischarges were absent in all patients with non-DM1 myotonia. There were significant differences in the occurrence rate between the two groups (P < 0.01). CONCLUSION: Afterdischarges may serve as a suggestive role in clinical diagnosis of DM1. The discovery that DM1 can present with afterdischarges may pave a new way to study the pathogenesis of DM1.


Assuntos
Miotonia , Distrofia Miotônica , Humanos , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Miotonia/diagnóstico , Miotonia/genética , Estudos Retrospectivos , Eletromiografia , Testes Genéticos
2.
Expert Rev Mol Diagn ; 23(12): 1175-1193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38009256

RESUMO

INTRODUCTION: Skeletal muscle channelopathies (SMCs) are a heterogenous group of disorders, caused by mutations in skeletal ion channels leading to abnormal muscle excitability, resulting in either delayed muscle relaxation (myotonia) which characterizes non-dystrophic myotonias (NDMs), or membrane transient inactivation, causing episodic weakness, typical of periodic paralyses (PPs). AREAS COVERED: SMCs include myotonia congenita, paramyotonia congenita, and sodium-channel myotonia among NDMs, and hyper-normokalemic, hypokalemic, or late-onset periodic paralyses among PPs. When suspecting an SMC, a structured diagnostic approach is required. Detailed personal and family history and clinical examination are essential, while neurophysiological tests should confirm myotonia and rule out alternative diagnosis. Moreover, specific electrodiagnostic studies are important to further define the phenotype of de novo cases and drive molecular analyses together with clinical data. Definite diagnosis is achieved through genetic testing, either with Sanger sequencing or multigene next-generation sequencing panel. In still unsolved patients, more advanced techniques, as exome-variant sequencing or whole-genome sequencing, may be considered in expert centers. EXPERT OPINION: The diagnostic approach to SMC is still mainly based on clinical data; moreover, definite diagnosis is sometimes complicated by the difficulty to establish a proper genotype-phenotype correlation. Lastly, further studies are needed to allow the genetic characterization of unsolved patients.


Assuntos
Canalopatias , Miotonia , Transtornos Miotônicos , Paralisias Periódicas Familiares , Humanos , Miotonia/diagnóstico , Miotonia/genética , Canalopatias/diagnóstico , Canalopatias/genética , Músculo Esquelético , Transtornos Miotônicos/genética , Mutação , Paralisia
3.
J Vet Diagn Invest ; 35(4): 413-416, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212506

RESUMO

Hereditary myotonia (HM) is characterized by delayed muscle relaxation after contraction as a result of a mutation in the CLCN1 gene. We describe here a complex CLCN1 variant in a mixed-breed dog with clinical and electromyographic signs of HM. Blood samples from the myotonic dog, as well as from his male littermate and parents, were analyzed via amplification of the 23 exons encoding CLCN1. After sequencing the CLCN1 gene, a complex variant was found in exon 6 c.[705T>G; 708del; 712_732del], resulting in a premature stop codon in exon 7 and a protein that was 717 amino acids shorter than the normal CLC protein. The myotonic dog was identified as homozygous recessive for the complex CLCN1 variant; its parents were heterozygous, and its male littermate was homozygous wild-type. Knowledge of the CLCN1 mutations responsible for the development of hereditary myotonia allows greater clarification of this condition.


Assuntos
Doenças do Cão , Miotonia Congênita , Miotonia , Animais , Cães , Masculino , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Éxons , Mutação , Miotonia/genética , Miotonia/veterinária , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Miotonia Congênita/veterinária
4.
BMC Neurol ; 23(1): 171, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106355

RESUMO

BACKGROUND: Neutral lipid storage disease with myopathy (NLSD-M) is an autosomal recessive disease that manifests itself around the 3rd to 4th decade with chronic myopathy predominantly proximal in the shoulder girdle. Clinical myotonia is uncommon. We will report a rare case of association of pathogenic variants on PNPLA2 and CLCN1 genes with a mixed phenotype of NLSD-M and a subclinical form of Thomsen's congenital myotonia. CASE PRESENTATION: We describe a patient with chronic proximal myopathy, subtle clinical myotonia and electrical myotonia on electromyography (EMG). Serum laboratory analysis disclosure hyperCKemia (CK 1280 mg/dL). A blood smear analysis showed Jordan's anomaly, a hallmark of NLSD-M. A genetic panel was collected using next-generation sequencing (NGS) technique, which identified two pathogenic variants on genes supporting two different diagnosis: NLSD-M and Thomsen congenital myotonia, whose association has not been previously described. CONCLUSIONS: Although uncommon, it is important to remember the possibility of association of pathogenic variants to explain a specific neuromuscular disease phenotype. The use of a range of complementary methods, including myopathy genetic panels, may be essential to diagnostic definition in such cases.


Assuntos
Doenças Musculares , Miotonia Congênita , Miotonia , Humanos , Aciltransferases/genética , Canais de Cloreto/genética , Lipase/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Miotonia/genética , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética
5.
Sci Rep ; 13(1): 2538, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782059

RESUMO

Skeletal muscle sodium channel disorders give rise to episodic symptoms such as myotonia and/or periodic paralysis. Chronic symptoms with permanent weakness are not considered characteristic of the phenotypes. Muscle fat replacement represents irreversible damage that inevitably will impact on muscle strength. This study investigates muscle fat replacement and contractility in patients with pathogenic SCN4A variants compared to healthy controls. T1-weighted and 2-point Dixon MRI of the legs were conducted to assess fat replacement. Stationary dynamometry was used to assess muscle strength. Contractility was determined by maximal muscle contraction divided by cross-sectional muscle area. The average cross-sectional intramuscular fat fraction was greater in patients compared with controls by 2.5% in the calves (95% CI 0.74-4.29%, p = 0.007) and by 2.0% in the thighs (95% CI 0.75-3.2%, p = 0.003). Muscle contractility was less in patients vs. controls by 14-27% (p < 0.05). Despite greater fat fraction and less contractility, absolute strength was not significantly less. This study quantitatively documents greater fat fraction and additionally describes difference in muscle contractility in a large cohort of patients with skeletal muscle sodium channel disorders. The clinical impact of these abnormal findings is likely limited as muscle hypertrophy in the patients served to preserve absolute muscle strength. Subgroup analysis indicated significant difference in phenotype by genotype, however these findings lack statistical significance and serve as inspiration for future researchers to probe into the geno- phenotype relationship in these disorders.Trial registration: The study was registered at http://clinicaltrials.gov (identifier: NCT04808388).


Assuntos
Canalopatias , Doenças Musculares , Miotonia , Humanos , Estudos Transversais , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Doenças Musculares/patologia , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canais de Sódio/genética , Canalopatias/patologia
6.
Exp Neurol ; 362: 114342, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720299

RESUMO

Non-dystrophic myotonias include several entities with possible clinical overlap, i.e. myotonia congenita caused by CLCN1 gene mutations, as well as paramyotonia congenita and sodium channel myotonia caused by SCN4A gene mutations. Herein, we describe the clinical features of five relatives affected by clinical and neurophysiological myotonia, with an aspecific and mixed phenotype. Next-generation sequencing identified the novel p.K1302R variant in SCN4A and the p.H838P variant in CLCN1. Segregation of the two mutations with the disease was confirmed by genotyping affected and non-affected family members. Patch-clamp experiments showed that sodium currents generated by p.K1302R and WT hNav1.4 were very similar. Mutant channel showed a small negative shift (5 mV) in the voltage-dependence of activation, which increased the likelihood of the channel to open at more negative voltages. The p.H838P mutation caused a reduction in chloride current density and a small voltage-dependence shift towards less negative potentials, in agreement with its position into the CBS2 domain of the C-terminus. Our results demonstrated that the mild functional alterations induced by p.K1302R and p.H838P in combination may be responsible for the mixed myotonic phenotypes. The K1302R mutant was sensitive to mexiletine and lamotrigine, suggesting that both drugs might be useful for the K1302R carriers.


Assuntos
Miotonia Congênita , Miotonia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4 , Mutação , Miotonia/genética , Fenótipo , Canais de Cloreto/genética
7.
Exp Neurol ; 361: 114303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563835

RESUMO

It has long been accepted that myotonia (muscle stiffness) in patients with muscle channelopathies is due to myotonic discharges (involuntary firing of action potentials). In a previous study, we identified a novel phenomenon in myotonic muscle: development of plateau potentials, transient depolarizations to near -35 mV lasting for seconds to minutes. In the current study we examined whether plateau potentials contribute to myotonia. A recessive genetic model (ClCadr mice) with complete loss of muscle chloride channel (ClC-1) function was used to model severe myotonia congenita with complete loss of ClC-1 function and a pharmacologic model using anthracene-9-carboxylic acid (9 AC) was used to model milder myotonia congenita with incomplete loss of ClC-1 function. Simultaneous measurements of action potentials and myoplasmic Ca2+ from individual muscle fibers were compared to recordings of whole muscle force generation. In ClCadr muscle both myotonia and plateau potentials lasted 10s of seconds to minutes. During plateau potentials lasting 1-2 min, there was a gradual transition from high to low intracellular Ca2+, suggesting a transition in individual fibers from myotonia to flaccid paralysis in severe myotonia congenita. In 9 AC-treated muscles, both myotonia and plateau potentials lasted only a few seconds and Ca2+ remained elevated during the plateau potentials, suggesting plateau potentials contribute to myotonia without causing weakness. We propose, that in myotonic muscle, there is a novel state in which there is contraction in the absence of action potentials. This discovery provides a mechanism to explain reports of patients with myotonia who suffer from electrically silent muscle contraction lasting minutes.


Assuntos
Miotonia Congênita , Miotonia , Camundongos , Animais , Miotonia/genética , Miotonia Congênita/genética , Miotonia Congênita/tratamento farmacológico , Contração Muscular , Potenciais de Ação/fisiologia , Fibras Musculares Esqueléticas , Canais de Cloreto/genética , Modelos Animais de Doenças
8.
Pract Neurol ; 23(1): 74-77, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36192135

RESUMO

A 21-year-old woman developed an acute myotonic reaction while undergoing anaesthesia using succinylcholine. Examination later showed she had shoulder, neck and calf hypertrophy, bilateral symmetrical ptosis and eyelid, handgrip and percussion myotonia. Peripheral neurophysiology studies identified significant, continuous myotonic discharges in both upper and lower limbs. Genetic analysis identified a c.3917G>A (p.Gly1306Glu) mutation in the SCN4A gene, confirming a diagnosis of sodium channel myotonia. Succinylcholine and other depolarising agents can precipitate life-threatening acute myotonic reactions when given to patients with myotonia. Patients with neuromuscular disorders are at an increased risk of perioperative anaesthetic complications. We report a woman who developed an acute myotonic reaction whilst undergoing anaesthesia, in the context of an unrecognised myotonic disorder. We then discuss an approach to the diagnosis of myotonic disorders.


Assuntos
Anestesia , Miotonia , Transtornos Miotônicos , Feminino , Humanos , Adulto Jovem , Adulto , Succinilcolina/efeitos adversos , Força da Mão , Transtornos Miotônicos/induzido quimicamente , Transtornos Miotônicos/diagnóstico , Miotonia/induzido quimicamente , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
9.
Continuum (Minneap Minn) ; 28(6): 1778-1799, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537980

RESUMO

PURPOSE OF REVIEW: This article describes the clinical features, diagnosis, pathophysiology, and management of nondystrophic myotonia and periodic paralysis. RECENT FINDINGS: An increasing awareness exists about the genotype-phenotype overlap in skeletal muscle channelopathies, and thus genetic testing is needed to make a definitive diagnosis. Electrodiagnostic testing in channelopathies is highly specialized with significant overlap in various mutation subtypes. Randomized clinical trials have now been conducted in these disorders with expanded treatment options for patients with muscle channelopathies. SUMMARY: Skeletal muscle channelopathies are rare heterogeneous conditions characterized by lifelong symptoms that require a comprehensive management plan that includes pharmacologic and nonpharmacologic interventions. The significant variability in biophysical features of various mutations, coupled with the difficulties of performing clinical trials in rare diseases, makes it challenging to design and implement treatment trials for muscle channelopathies.


Assuntos
Canalopatias , Miotonia , Transtornos Miotônicos , Paralisias Periódicas Familiares , Humanos , Canalopatias/diagnóstico , Canalopatias/genética , Canalopatias/terapia , Músculo Esquelético , Miotonia/diagnóstico , Miotonia/genética , Miotonia/terapia , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/genética , Mutação/genética
10.
Neuromuscul Disord ; 32(10): 811-819, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050252

RESUMO

The non-dystrophic myotonias are inherited skeletal muscle disorders characterized by skeletal muscle stiffness after voluntary contraction, without muscle atrophy. Based on their clinical features, non-dystrophic myotonias are classified into myotonia congenita, paramyotonia congenita, and sodium channel myotonia. Using whole-exome next-generation sequencing, we identified a L703P mutation (c.2108T>C, p.L703P) in SCN4A in a Chinese family diagnosed with non-dystrophic myotonias. The clinical findings of patients in this family included muscle stiffness and hypertrophy. The biophysical properties of wildtype and mutant channels were investigated using whole-cell patch clamp. L703P causes both gain-of-function and loss-of-function changes in Nav1.4 properties, including decreased current density, impaired recovery, enhanced activation and slow inactivation. Our study demonstrates that L703P is a pathogenic variant for myotonia, and provides additional electrophysiological information for understanding the pathogenic mechanism of SCN4A-associated channelopathies.


Assuntos
Miotonia Congênita , Miotonia , Transtornos Miotônicos , Humanos , Mutação , Miotonia/genética , Miotonia/diagnóstico , Miotonia Congênita/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
11.
J Neurol ; 269(12): 6406-6415, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907044

RESUMO

Non-dystrophic myotonias (NDM) are rare skeletal muscle channelopathies, mainly linked to two voltage-gated ion channel genes, CLCN1 and SCN4A. The aim of this study is to identify the clinical and genetic features of patients with NDM in Japan. We collected a Japanese nationwide case series of patients with clinical diagnosis of NDM (1999-2021). Among 71 out of 88 pedigrees, using Sanger and next-generation sequencing targeting both CLCN1 and SCN4A genes, variants classified as pathogenic/likely pathogenic/unknown significance were detected from CLCN1 (31 probands), SCN4A (36 probands), or both genes (4 probands), and 11 of them were novel. Pedigrees carrying mono-allelic CLCN1 variants were more commonly seen than that with bi-allelic/double variants (24:7). Compared to patients with CLCN1 variants, patients harboring SCN4A variants showed younger onset age (5.64 ± 4.70 years vs. 9.23 ± 5.21 years), fewer warm-up phenomenon, but more paramyotonia, hyperCKemia, transient muscle weakness, and cold-induced myotonia. Haplotype analysis verified founder effects of the hot spot variants in both CLCN1 (p.T539A) and SCN4A (p.T1313M). This study reveals variants in CLCN1 and SCN4A from 80.7% of our case series, extending genetic spectrum of NDM, and would further our understanding of clinical similarity/diversity between CLCN1- and SCN4A-related NDM, as well as the genetic racial differences.


Assuntos
Miotonia Congênita , Miotonia , Humanos , Lactente , Pré-Escolar , Criança , Miotonia/genética , Efeito Fundador , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Japão , Canais de Cloreto/genética , Mutação/genética , Miotonia Congênita/genética
12.
Medicine (Baltimore) ; 101(29): e29591, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35866763

RESUMO

BACKGROUND: This study aimed to characterize the genetic, pathological, and clinical alterations of 17 patients in China presenting with nondystrophic myotonia (NDM) and to analyze the relationship between genotype and clinical phenotype. METHODS: CLCN1 and SCN4A genes in patients with clinical features and muscle pathology indicative of NDM were sequenced. Furthermore, KCNE3 and CACNA1S genes were assessed in patients with wild-type CLCN1 and SCN4A. RESULTS: Patients may have accompanying atypical myopathy as well as muscle hypertrophy, secondary dystonia, and joint contracture as determined by needle electromyography. All the study participants were administered mexiletine in combination with carbamazepine and showed significant improvements in myotonia symptoms in response to this therapy. CLCN1 gene mutation was detected in 8 cases diagnosed with myotonia congenital using gene screening. The detected mutations included 5 missense, 2 nonsense, 1 deletion, and 2 insertions. Further gene analysis showed 4 mutations in the SCN4A gene in patients diagnosed with paramyotonia congenita. CONCLUSIONS: Myotonia congenita and paramyotonia congenita are the predominant forms of NDM in China. NDM may be best diagnosed using genetic analysis in associated with clinical features.


Assuntos
Canais de Cloreto/genética , Miotonia , Transtornos Miotônicos , Humanos , Mutação , Miotonia/diagnóstico , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
13.
Channels (Austin) ; 16(1): 35-46, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35170402

RESUMO

Myotonia congenita (MC) is a rare genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1), encoding the voltage-gated chloride channel ClC-1 in skeletal muscle. Our study reported the clinical and molecular characteristics of six patients with MC and systematically review the literature on Chinese people. We retrospectively analyzed demographics, clinical features, family history, creatine kinase (CK), electromyography (EMG), treatment, and genotype data of our patients and reviewed the clinical data and CLCN1 mutations in literature. The median ages at examination and onset were 26.5 years (range 11-50 years) and 6.5 years (range 1.5-11 years), respectively, in our patients, and 21 years (range 3.5-65 years, n = 45) and 9 years (range 0.5-26 years, n = 50), respectively, in literature. Similar to previous reports, myotonia involved limb, lids, masticatory, and trunk muscles to varying degrees. Warm-up phenomenon (5/6), percussion myotonia (3/5), and grip myotonia (6/6) were common. Menstruation triggered myotonia in females, not observed in Chinese patients before. The proportion of abnormal CK levels (4/5) was higher than data from literature. Electromyography performed in six patients revealed myotonic changes (100%). Five novel CLCN1 mutations, including a splicing mutation (c.853 + 4A>G), a deletion mutation (c.2010_2014del), and three missense mutations (c.2527C>T, c.1727C>T, c.2017 G > C), were identified. The c.892 G > A (p.A298T) mutation was the most frequent mutation in the Chinese population. Our study expanded the clinical and genetic spectrum of patients with MC in the China. The MC phenotype in Chinese people is not different from that found in the West, while the genotype is different.


Assuntos
Miotonia Congênita , Miotonia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Canais de Cloreto/genética , Feminino , Humanos , Lactente , Pessoa de Meia-Idade , Mutação , Miotonia/genética , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Estudos Retrospectivos , Adulto Jovem
14.
Brain ; 145(2): 607-620, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529042

RESUMO

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Assuntos
Miotonia Congênita , Miotonia , Canais de Cloreto/genética , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Fenótipo
15.
Neurol Sci ; 42(12): 5365-5368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34386887

RESUMO

INTRODUCTION: Myotonic disorders are a group of diseases affecting the muscle, in different ways. Myotonic dystrophy type 1 (DM1) is related to (CTG)n expansion in the 3-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene and is the most frequent and disabling form, causing muscular, visibility, respiratory, and cardiac impairment. Non-dystrophic myotonias (NDMs) affect the skeletal muscle alone. In particular, mutations in the chloride channel (CLCN1) gene cause myotonia congenita (MC), which can have autosomal dominant or recessive inheritance. CASE REPORT: We describe a patient with a family history of asymptomatic or paucisymptomatic myotonia, who presented handgrip myotonia which sharply reduced after mexiletine administration. Molecular analysis showed both a paternally inherited DMPK expansion and a maternally inherited CLCN1 mutation. CONCLUSIONS: Only one other similar case was reported so far; however, the segregation of the two mutations and the characteristics of the muscle were not studied. Since our patient lacked the classical phenotypical and muscle histopathological characteristics of DM1 and showed mild splicing alterations despite a pathogenic DMPK expansion and the nuclear accumulation of toxic RNA, we may speculate that the co-occurrence of a CLCN1 mutation could have attenuated the severity of DM1 phenotype.


Assuntos
Miotonia Congênita , Miotonia , Distrofia Miotônica , Canais de Cloreto/genética , Força da Mão , Humanos , Mutação , Miotonia/genética , Miotonia Congênita/complicações , Miotonia Congênita/genética , Distrofia Miotônica/complicações , Distrofia Miotônica/genética , Miotonina Proteína Quinase
16.
Neurol Sci ; 42(12): 5359-5363, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34378097

RESUMO

INTRODUCTION: Mutations of the skeletal muscle sodium channel gene SCN4A are associated with several neuromuscular disorders including hyper/hypokaliemic periodic paralysis, paramyotonia congenita and sodium channel myotonia. These disorders are distinguished from dystrophic myotonias by the absence of progressive weakness and extramuscular systemic involvement. METHODS: We present an Italian family with 2 subjects carrying a p.Asn1180Ile mutation in SCN4A gene showing a peculiar clinical picture characterized by the association of myopathic features and myotonia. RESULTS: The clinical, electromyographic and histological findings of these patients are reported. The possible pathogenicity of the mutation was tested by three different software, all giving positive results. DISCUSSION: This is the first report of a dominant, heterozygous mutation in SCN4A causing a complex phenotype of non-congenital myopathy and myotonic syndrome. We suggest that, in patients with myotonia and myopathy not related to dystrophic myotonias, the sequence analysis of SCN4A gene should be performed.


Assuntos
Doenças Musculares , Miotonia Congênita , Miotonia , Transtornos Miotônicos , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Linhagem
17.
Neuromuscul Disord ; 31(9): 829-838, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33965302

RESUMO

Skeletal muscle sodium channelopathies due to SCN4A gene mutations have a broad clinical spectrum. However, each phenotype has been reported in few cases of Chinese origin. We present detailed phenotype and genotype data from a cohort of 40 cases with SCN4A gene mutations seen in neuromuscular diagnostic service in Huashan hospital, Fudan University. Cases were referred from 6 independent provinces from 2010 to 2018. A questionnaire covering demographics, precipitating factors, episodes of paralysis and myotonia was designed to collect the clinical information. Electrodiagnostic studies and muscle MRI were retrospectively analyzed. The clinical spectrum of patients included: 6 Hyperkalemic periodic paralysis (15%), 18 Hypokalemic periodic paralysis (45%), 7 sodium channel myotonia (17.5%), 4 paramyotonia congenita (10%) and 5 heterozygous asymptomatic mutation carriers (12.5%). Review of clinical information highlights a significant delay to diagnosis (median 15 years), reports of pain and myalgia in the majority of patients, male predominance, circadian rhythm and common precipitating factors. Electrodiagnostic studies revealed subclinical myotonic discharges and a positive long exercise test in asymptomatic carriers. Muscle MRI identified edema and fatty infiltration in gastrocnemius and soleus. A total of 13 reported and 2 novel SCN4A mutations were identified with most variants distributed in the transmembrane helix S4 to S6, with a hotspot mutation p.Arg675Gln accounting for 32.5% (13/40) of the cohort. Our study revealed a higher proportion of periodic paralysis in SCN4A-mutated patients compared with cohorts from England and the Netherlands. It also highlights the importance of electrodiagnostic studies in diagnosis and segregation studies.


Assuntos
Povo Asiático/genética , Canalopatias/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4 , Paralisias Periódicas Familiares/genética , Adulto , China , Estudos de Coortes , Eletromiografia , Feminino , Genótipo , Humanos , Masculino , Mutação , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Linhagem , Fenótipo , Estudos Retrospectivos , Inquéritos e Questionários , Adulto Jovem
18.
Cells ; 10(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670307

RESUMO

Non-dystrophic myotonias have been linked to loss-of-function mutations in the ClC-1 chloride channel or gain-of-function mutations in the Nav1.4 sodium channel. Here, we describe a family with members diagnosed with Thomsen's disease. One novel mutation (p.W322*) in CLCN1 and one undescribed mutation (p.R1463H) in SCN4A are segregating in this family. The CLCN1-p.W322* was also found in an unrelated family, in compound heterozygosity with the known CLCN1-p.G355R mutation. One reported mutation, SCN4A-p.T1313M, was found in a third family. Both CLCN1 mutations exhibited loss-of-function: CLCN1-p.W322* probably leads to a non-viable truncated protein; for CLCN1-p.G355R, we predict structural damage, triggering important steric clashes. The SCN4A-p.R1463H produced a positive shift in the steady-state inactivation increasing window currents and a faster recovery from inactivation. These gain-of-function effects are probably due to a disruption of interaction R1463-D1356, which destabilizes the voltage sensor domain (VSD) IV and increases the flexibility of the S4-S5 linker. Finally, modelling suggested that the p.T1313M induces a strong decrease in protein flexibility on the III-IV linker. This study demonstrates that CLCN1-p.W322* and SCN4A-p.R1463H mutations can act alone or in combination as inducers of myotonia. Their co-segregation highlights the necessity for carrying out deep genetic analysis to provide accurate genetic counseling and management of patients.


Assuntos
Canais de Cloreto/genética , Mutação/genética , Miotonia Congênita/genética , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Linhagem
20.
J Neurol ; 268(5): 1708-1720, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33263785

RESUMO

INTRODUCTION: Non-dystrophic myotonias (NDM) are heterogeneous diseases caused by mutations in CLCN1 and SCN4A. The study aimed to describe the clinical and genetic spectrum of NDM in a large German cohort. METHODS: We retrospectively identified all patients with genetically confirmed NDM diagnosed in our center. The following data were analyzed: demographics, family history, muscular features, cardiac involvement, CK, EMG, genotype, other tested genes, treatment perceived efficacy. RESULTS: 70 patients (age 40.2 years ± 14.9; 52.8% males) were included in our study (48 NDM-CLCN1, 22 NDM-SCN4A). The most frequent presenting symptoms were myotonia (NDM-CLCN1 83.3%, NDM-SCN4A 72.2%) and myalgia (NDM-CLCN1 57.4%, NDM-SCN4A 52.6%). Besides a more prominent facial involvement in NDM-SCN4A and cold-sensitivity in NDM-CLCN1, no other significant differences were observed between groups. Cardiac arrhythmia or conduction defects were documented in sixNDM-CLCN1 patients (three of them requiring a pacemaker) and one patient with NDM-SCN4A. CK was normal in 40% of patients. Myotonic runs in EMG were detected in 89.1% of CLCN1 and 78.9% of SCN4A. 50% of NDM-CLCN1 patients had the classic c.2680C>T (p.Arg894*) mutation. 12 new genetic variants are reported. About 50% of patients were not taking any anti-myotonic drug at the last follow-up. The anti-myotonic drugs with the best patient's perceived efficacy were mexiletine and lamotrigine. CONCLUSION: This study highlights the relevant clinical overlap between NDM-CLCN1 and NDM-SCN4A patients and warrants the use of early and broad genetic investigation for the precise identification of the NDM subtype. Besides the clinical and genetic heterogeneity, the limited response to current anti-myotonic drugs constitutes a continuing challenge.


Assuntos
Miotonia Congênita , Miotonia , Adulto , Canais de Cloreto/genética , Feminino , Humanos , Masculino , Mutação , Miotonia/genética , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...